реферат
реферат

Меню

реферат
реферат реферат реферат
реферат

Литература - Другое (книга по генетике)

реферат

(уродствами) тех или иных тканей и органов. Метод заключает-

ся в возможности селективной элиминации тех специфических

типов клеток, которые отсутствуют или дефектны у больных с

моделируемым типом заболевания. Такие животные могут быть

получены при иньекции в зародыш рекомбинантной ДНК, содержа-

щей какой-либо цитотоксический ген, например, ген дифтерий-

ного токсина, находящийся под контролем работающих в опреде-

ленных типах клеток регуляторных элементов ДНК. При актива-

ции этих контролирующих элементов на определеной стадии раз-

вития экспрессия токсического гена приводит к избирательной

гибели всей специфической популяции клеток, то есть такая

система действует как очень точный скальпель.

Дальнейшая модификация метода заключается в использова-

нии для трансгеноза условно летального гена, каким является,

например, ген тимидинкиназы вируса Герпеса. Клетки,

экспрессирующие этот ген, функционируют совершенно нормаль-

но. Однако, на любой стадии онтогенетического развития можно

вызвать их селективную гибель при введении животному ганцик-

ловира - противогерпесного препарата. Эта система дает боль-

ше возможностей для экспериментального анализа роли специфи-

ческих клонов клеток в процессе нормального развития, а так-

же для изучения патологичеких процессов, связанных с гибелью

этих клеток. Подобная методология используется также при

разработке генотерапевтических подходов для лечения некото-

рых ненаследственных, в частности онкологических заболева-

ний (см Главу IX).

Весьма многообещающим методом моделирования представля-

ется направленное выключение работы определенных генов путем

введения в доимплантационные зародыши антисмысловых мРНК.

Такой подход был применен, в частности, при попытке модели-

рования болезни Гоше - лизосомного заболевания, обусловлен-

ного дефицитом бета-глюкуронидазы (Bevilacqua et al., 1988).

Естественно, что в этом случае выключение экспрессии гена

носит транзиторный характер, то есть моделью, по-сути, явля-

ется само животное - реципиент антисмысловой мРНК матрицы.

Другой пример экспериментального моделирования основан

на пересадке тканей или клеток атимусным иммунодефицитным

мышам nu/nu. У мышей этой линии в связи с отсутствием тимуса

и выраженным врожденным иммунодефицитом не происходит оттор-

жение трансплантированных чужеродных тканей. Более того, у

таких животных может происходить дифференцировка трансплан-

тированных подкожно эмбриональных зачатков и регенерация пе-

ресаженных кусочков тканей из различных органов других видов

животных и человека. Так например, кусочки трахеи крысы с

нанесенными на них клетками бронхогенного эпителия человека,

имплантированные подкожно атимусным мышам, формируют струк-

туру поверхностного эпителия, сходную с той, которая имеется

в бронхах человека. Именно таким путем мыши nu/nu были ак-

тивно использованы для анализа экспрессии мутантных вариан-

тов гена муковисцидоза человека, а также для испытания эф-

фективности коррекции этого генетического дефекта с помощью

методов генотерапии. В последнем случае мутантные эпители-

альные клетки пациентов с муковисцидозом вначале подвергали

трансфекции ретровирусными или аденовирусными векторами, не-

сущими, наряду с геном - репортером, полноразмерную кДНК

нормального гена муковисцидоза. Относительная простота по-

добных моделей и возможность генетического манипулирования с

клетками человека до их трансплантации атимусным мышам дела-

ют этот подход весьма привлекательным для решения многих

экспериментальных вопросов. Основные недостатки таких моде-

лей связаны с трудностями содержания и разведения атимусных

мышей и их низкой жизнеспособностью. Генетические линии жи-

вотных в этом отношении имеют значительные преимущества.

Раздел 8.4. Конструирование модельных генетических ли-

ний животных.

Современный уровень экспериментальной эмбриологии мле-

копитающих и современные достижения молекулярной генетики

позволяют осуществлять направленное получение генетических

моделей наследственных болезней путем введения сайт-специфи-

ческих модификаций в геном млекопитающих. Такой значительный

качественный прорыв в генетическом моделировании стал возмо-

жен благодаря появлению принципиально новой технологии мани-

пулирования с ранними зародышами млекопитающих. Особенно

важными в этом отношении оказались два новых методических

подхода: получение зародышей-химер, состоящих из клеточных

клонов разных зигот, путем введения тотипотентных клеток в

полость бластоцисты (Gardner, 1978) и разработка технологии

культивирования клеточных векторов, так называемых эмбрио-

нальных стволовых клеток (Evans, Kaufman, 1981). С другой

стороны, появились методы сайт-специфического переноса кло-

нированных последовательностей ДНК в геном эукариот, осно-

ванные на отборе клеточных клонов, в которых после трансфек-

ции происходит инсерция экзогенной ДНК в гомологичном сайте

геномной ДНК без какого-либо нарушения последовательности

ДНК в месте встраивания.

Конструированию генетических моделей должны предшество-

вать идентификация и сравнительный анализ двух гетерологич-

ных генов - гена человека, вследствие нарушения работы кото-

рого развивается моделируемое заболевание, и его гомолога у

выбранного для моделирования животного. При выборе обьекта

моделирования, в первую очередь, руководствуются методичес-

кими возможностями экспериментального манипулирования с жи-

вотными. Важное значение имеет сходство кодирующих областей

гетерологичных генов по нуклеотидным последовательностям. В

большинстве случаев мыши представляются наиболее удобным

обьектом для моделирования. Современный алгоритм формирова-

ния генетической линии животных с мутациями в заданном гене

предполагает: (1) наличие культур тотипотентных, то есть

способных к неограниченному развитию и дифференцировке, эмб-

риональных стволовых клеток; (2) создание на базе рекомби-

нантных ДНК генно-инженерных конструкций для направленного

переноса генов; (3) трансфекцию этих конструкций в культуры

эмбриональных стволовых клеток последующим скринингом и от-

бором клонов со специфическими генетическими модификациями;

(4) введение отобранных модифицированных клеток в зародыш на

стадии бластоцисты по методу Гарднера с целью получения хи-

мерных трансгенных животных; (5) отбор химерных особей, не-

сущих модифицированные гены в различных тканях и органах;

(6) селекцию особей, гетерозиготных по данной мутации; (7)

инбредное разведение и селекцию гомозигот (Рис.8.1).

Как упоминалось ранее, идеальной системой для направ-

ленного переноса мутаций в геном млекопитающих являются эмб-

риональные стволовые клетки - ЭСК (Evans, Kaufman, 1981;

Erickson, 1988; Labosky et al., 1994). Первичные культуры

этих клеток получают из клеток бластоцисты (внутренней кле-

точной массы) или из первичных половых клеток ранних пос-

тимплантационных зародышей. При выращивании на питательном

слое из эмбриональных фибробластов ЭСК сохраняются в недиф-

ференцированном состоянии от трех месяцев до года. При этом

они могут быть несколько раз заморожены и оттаяны без потери

способности к дифференцировке. ЭСК, введенные в бластоцель

(полость бластоцисты), сохраняют свою тотипотентность и мо-

гут участвовать в формировании, практически, всех эмбрио-

нальных зачатков и органов развивающегося зародыша. В ре-

зультате образуется животное - химера, состоящее из клеточ-

ных клонов двух разных типов: клеток исходного родительского

генотипа и ЭСК. Если эти клетки различаются, например, по

генам окраски шерсти, животное - химера будет иметь попереч-

ную или пятнистую окрашенность. При этом все животные, неза-

висимым образом полученные в результате введения в одинако-

вые по генотипу зародыши одной и той же линии клеток, будут

отличаться друг от друга по характеру пятнистости, так как

все химеры различны по набору клеточных клонов, развившихся

и дифференцировавшихся из введенных в зародыш ЭСК. Химерные

животные, у которых ЭСК дифференцировались в половые клетки

и дали начало полноценным зрелым гаметам будут устойчиво пе-

редавать своим потомкам генетическую информацию, содержащую-

ся в ЭСК. Таких животных ингда называют зародышевыми транс-

миттерами. При скрещивании их с мышами дикого типа часть по-

томков будет уже гетерозиготна по мутантным генам ЭСК, то

есть будут нести мутацию в гаплоидном состоянии в каждом ти-

пе клеток. Это в равной степени относится и к мутациям, ис-

кусственно введенным предварительно в ЭСК. Скрещивая таких

гетерозигот, можно получить животных, гомозиготных по задан-

ной мутации. Естественно, последнее достижимо только в том

случае, если мутация не окажется летальной в гомозиготном

состоянии у животных этого вида.

Возможность вести селекцию нужных мутантных или

трансгенных клонов ЭСК и лишь затем их использовать в ка-

честве клеточных векторов нашло широкое применение в генети-

ческом моделировании. Первоначально для этой цели ЭСК обра-

батывали различными мутагенами (этилнитрозомочевиной) отби-

рали клоны клеток, несущих мутацию в нужном гене, и затем

использовали их для создания инъекционных химер по Гарднеру.

Таким способом на мышах была получена модель болезни Леш-Ни-

хана - мутация гена гипоксантин-фосфорибозил-трансферазы

(Hooper et al.,1987). C разработкой технологии адресной

доставки чужеродной ДНК в гены-мишени этот способ генети-

ческого моделирования стал особенно эффективным. Сайт-специ-

фическая модификация генов ЭСК достигается за счет гомоло-

гичной рекомбинации между экзогенной и хромосомной ДНК. При

трансфекции большая часть проникших в ядра молекул рекомби-

нантной ДНК сохраняется там в течение двух-трех дней в виде

кольцевых эписом и в дальнейшем теряется либо происходит ин-

теграция трансфецирующей плазмиды в геном клетки- хозяина

путем негомологичной рекомбинации, то есть в случайные сайты

хромосомной ДНК. В таких клетках экспрессия введенных генов

устойчиво сохраняется. Частота интеграции экзогенной ДНК мо-

жет быть повышена при использовании линейных плазмид и спе-

циальных, преимущественно, ретровирусных векторов экзогенной

ДНК (см. Главу IX). Случаи стабильной интеграции экзогенной

ДНК могут быть легко выявлены, если трансфецирующие плазмиды

или вектора содержат селектируемый маркерный ген. Чаще всего

в качестве маркера используют прокариотический ген neo, со-

общающий клеткам устойчивость к неомицину. Клетки, в которых

произошла интеграции такой плазмиды в хромосомную ДНК, будут

образовывать устойчивые клоны при выращивании на среде G418,

содержащей неомицин, в то время как все другие клоны клеток

будут в этих условиях деградировать.

Раздел 8.5. Методы направленного переноса генов.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57


реферат реферат реферат
реферат

НОВОСТИ

реферат
реферат реферат реферат
реферат
Вход
реферат
реферат
© 2000-2013
Рефераты, доклады, курсовые работы, рефераты релиния, рефераты анатомия, рефераты маркетинг, рефераты бесплатно, реферат, рефераты скачать, научные работы, рефераты литература, рефераты кулинария, рефераты медицина, рефераты биология, рефераты социология, большая бибилиотека рефератов, реферат бесплатно, рефераты право, рефераты авиация, рефераты психология, рефераты математика, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, рефераты логистика, дипломы, рефераты менеджемент и многое другое.
Все права защищены.