реферат
реферат

Меню

реферат
реферат реферат реферат
реферат

Литература - Другое (книга по генетике)

реферат

нетических и биохимических основ патогенеза и разработки на

этой базе наиболее эффективных методов лечения. Начальные

этапы решения поставленной задачи включают в себя иссследо-

вание механизмов тканеспецифической экспрессии и регуляции

активности генов в нормальных клетках, оценку клинического

выражения различных типов нарушений гена, выявление первич-

ного биохимического дефекта, а также сопоставление молеку-

лярных основ работы генов в нормальных и мутантных клетках.

Естественно, что в различных тканях организма

экспрессируется не все, а лишь определенные группы генов.

Исключение составляют лишь так называемые гены домашнего хо-

зяйства (house-keeping genes), генопродукты которых обеспе-

чивают жизнедеятельность всех типов клеток (см.Главу II). По

весьма ориентировочным оценкам в тканях млекопитающих и че-

ловека работают в среднем около 2-3% всех генов, в клетках

печени - основной биохимической лаборатории организма - око-

ло 5%, тогда как в клетках мозга - примерно 9-10% (Корочкин,

1977). Это означает, что в различных соматических клетках

эукариот транскрибируется от 5 до 20 тысяч генов (Льюин,

1987). Значительная часть контролируемых ими белков необхо-

дима для обеспечения жизнедеятельности самих клеток. В про-

цессе онтогенеза и клеточной дифференцировки в разных тканях

организма происходит избирательная активация многих других

специфических генов, что, в конечном итоге, обусловливает

значительные межклеточные различия в наборе белков и в ско-

рости их синтеза.

Контроль генной активности осуществляется за счет диф-

ференциальной транскрипции и процессинга РНК в клеточных яд-

рах, различной стабильности мРНК в цитоплазме, избирательной

трансляции мРНК. Дифференциальная экспрессия генов, конечным

результатом которой является синтез функционально активного

белка, предполагает не только адекватную регуляцию генной

активности, но и полноценность всех последующих этапов,

включая сам белковый продукт, его устойчивость, способность

к посттрансляционным модификациям, правильную локализации и

корректное взаимодействие с другими компонентами клетки. Ре-

шающее значение для успешного анализа всего этого сложного

комплекса имеет выбор адекватных биологических моделей, по-

иск и целенаправленное конструирование которых представляет

вполне самостоятельную научную задачу.

Наиболее доступными модельными системами для анализа

экспрессии генов in vitro являются культуры клеток. Для кло-

нирования, генноинженерного манипулирования, направленного

введения сайт специфических мутаций, получения большого ко-

личества клонированных последовательностей ДНК, специфи-

ческих молекул мРНК, а также белкового продукта гена обычно

используют генетически хорошо изученные прокариотические

системы (Хеймс, Хиггинс, 1987). Для исследования процессов

трансляции, посттрансляционных модификаций белка, его внут-

риклеточной локализации и функционирования чаще используют

культуры клеток эукариот и, в частности, специфические куль-

туры клеток человека. Особая роль в изучении начальных эта-

пов развития патологического процесса, обусловленного

присутствием генных мутаций, а также в разработке терапевти-

ческих методов, включая генноинженерную коррекцию метаболи-

ческого дефекта, принадлежит культурам мутантных клеток. Это

могут быть первичные или перевиваемые культуры клеток, полу-

ченные из специфических тканей больного человека, либо выде-

ленные из тканей линейных животных, служащих генетической

моделью наследственного заболевания.

Идентификация гомологичных генов у экспериментальных

животных во многих случаях значительно облегчает и ускоряют

исследование функциональной активности нормальных и мутант-

ных генов человека. Большая роль в изучении молекулярных ме-

ханизмов развития патологических процессов in vivo принадле-

жит генетическим линиям животных. Это могут быть линии, по-

лученные в результате отбора спонтанно возникших или индуци-

рованных мутаций, а также искусственно сконструированные мо-

дели на базе трансгенных животных, в геном которых введен

чужеродный ген или фрагмент ДНК. Рассмотрим основные экспе-

риментальные подходы, используемые для анализа экспрессии

генов.

Раздел 6.2 Анализ регуляторных элементов гена, изоляция

и исследование мРНК, искусственные

транскрипционные системы.

Регуляция экспрессии генов в цепочке ДНК - РНК - белок

может осуществляться на различных молекулярных уровнях. В

соответствии с этим исследования дифференциальной активности

генов в разных типах клеток и тканей включают оценку работы

контролирующих элементов генов, анализ молекул РНК на всех

этапах от появления первичного транскрипта до зрелой мРНК и

изучение соответствующего белкового продукта, включая его

процессинг (созревание), внутриклеточную локализацию, тка-

неспецифическое распределение .

Исследования регуляторных цис-действующих элементов ге-

нома, таких как промоторы, инхансеры, участки ДНК, подавляю-

щие транскрипцию, являются составной частью анализа молеку-

лярной структуры любого гена. Идентификацию таких элементов

проводят с использованием разнообразных современных методов

молекулярной генетики. В частности, последовательности ДНК в

5'- фланкирующей области гена, ответственные за тканеспеци-

фическую индукцию генной активности, могут быть локализованы

путем исследования транскрипции в различных линиях клеток

при введении в них генов с искусственными делециями этих

участков ДНК. Для оценки активности идентифицированных регу-

ляторных последовательностей их сливают с чужеродными хорошо

изученными неиндуцибельными клонированными генами, так назы-

ваемыми "репортерами". Такие генетические конструкции в

составе векторных последовательностей вводят в культивируе-

мые клетки эукариот и наблюдают за изменением уровня

экспрессии. В качестве "репортера" часто использую ген хло-

рамфеникол-ацетил-трансферазы (CAT-ген), который в естест-

венных условиях экспрессируется только в клетках прокариот.

Сам фермент (CAT) обладает высокой активностью, что позволя-

ет не только легко обнаруживать ее минимальные количества в

клетке, но и с высокой точностью проводить количественную

оценку. Для повышения чувствительности анализ экспрессии хи-

мерных генов часто проводят в культуре фибробластов почек

африканской зеленой мартышки (COS-клетки). Эти клетки моди-

фицированы таким образом, что в них после трансфекции про-

исходит амплификация копий сконструированных определенным

образом эписом (внехромосомных генетических конструк-

ций ( см. Главу X), что ведет к значительному усилению сиг-

налов экспрессии введенных генов (трансгенов). Перенос генов

(трансгеноз) может быть осуществлен и на уровне целого орга-

низма, в частности, зиготы. Полученные в результате подобных

манипуляций трансгенные животные могут быть также использо-

ваны в качестве модельной системы для анализа механизмов

тканеспецифической активации генов in vivo.

Матричная РНК является наиболее удобным обьектом для

изучения регуляции транскрипции генов и посттранскрипционных

модификаций РНК. Тотальная клеточная РНК сотоит на 90 - 95%

из рибосомальных и транспортных РНК, тогда как доля трансли-

руемых или poly(A)+ РНК не превышает 5% (Льюин, 1987). При

этом, концентрация РНК-транскриптов индивидуальных генов

среди всех молекул мРНК, в среднем, колеблется в пределах от

0.01% до 0.001% (Гайцхоки, 1978). Поэтому для обнаружения

индивидуальных типов мРНК должны использоваться высоко-

чувствительные методы. Обычным методом идентификации мРНК на

тканевом и клеточном уровнях является гибридизация in situ

РНК- или ДНК-зондов с молекулами мРНК на гистологических

срезах (Хаффнер, Уиллисон,1990). В качестве ДНК-зондов

используют клонированные последовательности кДНК и синтети-

ческие олигонуклеотиды. После инкубации меченых зондов на

цитологических препаратах с последующей тщательной отмывкой

несвязавшихся молекул положение комплементарных РНК-последо-

вательностей в клетках определяют радиоавтографическими, ли-

бо в случае биотинового мечения - иммуногистохимическими ме-

тодами. Оптимальные условия гибридизации дают возможность не

только выявлять присутствие специфических мРНК, но и опреде-

лить их внутриклеточную локализацию (Манк, 1990; Хаффнер,

Уиллисон, 1990; Boehringer, Mannual, 1994).

Анализ индивидуальных РНК включает изоляцию из тканей

пула неповрежденных биологически активных мРНК и идентифика-

цию среди них специфических молекул путем использования раз-

личных вариантов ДНК-РНК гибридизации. Для генов с высоким

уровнем транскрипции могут быть пригодны дот или слот блоты

(см.Главу I). Когда источником РНК служат клетки, которые не

могут быть получены в большом количестве, используют цитоп-

лазматический дот-блот. При этом целые клетки лизируют, и

фиксируют непосредственно на тех мембранах, на которых про-

водят гибридизацию. Значительно большой чувствительностью

обладает, так называемый Northern blot (нозерн-блот) - гиб-

ридизация с ДНК- зондами на фильтрах предварительно скон-

центрированных и фракционированных путем электрофореза моле-

кул РНК (Sambrook et al., 1987). Электрофорез проводят в

агарозе с добавлением формальдегида, денатурирующего РНК. В

этих условиях скорость продвижения молекул РНК через гель

находится в логарифмической зависимости от длины последова-

тельности, что позволяет точно определить размер РНК

транскрипта. Основная масса РНК на геле представлена в виде

двух доминирующих бэндов, соответствующих двум типам рибосо-

мальной РНК - 28S и 18S. Все молекулы мРНК сконцентрированы

в плохо различимой, слабо окрашенной области геля, в которой

отдельные типы мРНК могут быть выявлены только путем гибри-

дизации с соответствующими ДНК-зондами. Нозерн-блот имеет то

преимущество, что при электрофорезе могут быть разделены мо-

лекулы РНК, дающие перекрестную гибридизацию с ДНК-зондом.

Кроме того, характер электрофоретического разделения позво-

ляет визуально оценить качество изолированной РНК. При очень

низких концентрациях специфических мРНК или в тех случаях,

когда ДНК-зонды дают перекрестную гибридизацию с другими

компонентами (не мРНК), проводят обогащение изолированной

тотальной РНК транслируемыми мРНК путем отбора на колонках

фракций, содержащих поли-A "хвосты". Для этого выделенную

РНК пропускают через короткую колонку с пришитыми поли-T

олигонуклеотидными последовательностями и высокой концентра-

цией солей в буферном растворе, так чтобы молекулы мРНК, со-

держащие поли -A "хвосты", задерживались на колонке. При

снижении концентрации солей в буфере происходит расплавление

A-T дуплексов и высвобождение молекул мРНК. Таким способом

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57


реферат реферат реферат
реферат

НОВОСТИ

реферат
реферат реферат реферат
реферат
Вход
реферат
реферат
© 2000-2013
Рефераты, доклады, курсовые работы, рефераты релиния, рефераты анатомия, рефераты маркетинг, рефераты бесплатно, реферат, рефераты скачать, научные работы, рефераты литература, рефераты кулинария, рефераты медицина, рефераты биология, рефераты социология, большая бибилиотека рефератов, реферат бесплатно, рефераты право, рефераты авиация, рефераты психология, рефераты математика, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, рефераты логистика, дипломы, рефераты менеджемент и многое другое.
Все права защищены.