реферат
реферат

Меню

реферат
реферат реферат реферат
реферат

Обоснование основных параметров промысловой схемы с применением ваерной лебедки

реферат
p align="left">Согласно паспортным данным автономность плавания БМРТ типа «Маяковский» составляет 60 суток. Автономность судна по запасам дизельного и котельного топлива может отличаться от паспортной .

Технические характеристики БМРТ типа «Маяковский» СССР 1958 г

Главные размерения, м

длина наибольшая

84.5

длина между перпендикулярами

75.0

ширина наибольшая

14.0

высота борта до верхней палубы

10.0

осадка наибольшая

5.62

Водоизмещение наибольшее, т

3800

Дедвейт , т при выходе на промысел

1316

наибольший (55% запас)

1518

Грузовместимость, м3 общая

1482

рефрижераторного трюма №1

236

рефрижераторного трюма №2

558

цистерны рыбьего жира

28.8

Вместимость цистерн, м3

мазута

251

дизельного топлива

718

смазочного масла

32

пресной воды

301

Главный двигатель, Дизель

8ДР43/61-В1

мощность, кВт

1470

Судовая электростанция

Дизель, марка

6425/34

мощность

4*220

Тип движителя

ВРШ

скорость хода, уз

13

Автономность, сут

60

Холодильная установка производственная(хладагент - аммиак)

холодопроизводительность, кВт

3*93.04

Температура воздуха в трюмах мороженной продукции, 0С

-18

Производительность технологического оборудования

морозильных аппаратов, т/сут

2*15

рыбомучной установки (по сырью), т/сут

20

установки для выработки медицинского жира (по печени), т/сут

4.0

Промысловое устройство

траловые лебедки, кол.

2

тип - электрические, марка

ЛЭТр2-4

тяговое усилие, кН

58.9

канатоемкость, м

3000

диаметр ваера, мм

26

1.3 Характеристика орудия лова

Трал представляет собой орудие лова в виде мешка, который буксирует в толще воды или у дна. Тралами ловят косячную или относительно разреженную рыбу в море до глубин 2000-2500 м и во внутренних водоемах (в основном озерах и водохранилищах).

Объектами тралового лова являются треска, пикша, морской окунь, камбала, палтус, хек, сардина, скумбрия, ставрида, мереуза, морской карась и т.д. Кроме того, тралами ловят нерыбные объекты : креветок, криля, кальмаров.

Траловый лов широко применяют во всех станах с развитой рыбной промышленностью - в России, Японии, США, Германии, Норвегии и т.д. он дает примерно 2/3 мирового улова рыбы и около ѕ добычи рыбы в России.

Широкому распространению тралового лова способствует его универсальность, высокая активность, автономность, сравнительная простота механизации и автоматизации, возможность полной или частичной переработки рыбы на судах, высокая производительность и экономическая эффективность.

По способу горизонтального раскрытия тралы делят на распорные, близнецовые и бимтралы. У распорных тралов горизонтальное раскрытие обеспечивается распорная сила траловых досок, у бимтралов - брус-бим.

В зависимости от горизонта хода тралы делят на донные, придонные, разноглубинные и универсальные. По конструкции сетной части тралы делятся на двухпластные, четырехпластные и многопластные в зависимости от числа пластин, из которых сшит трал. По количеству буксировочных тросов при тралении различают тралы одно-, двух- и четырехваерные. Различают тралы для работы с борта и с кормы, с применением и без применения физических средств интенсивного лова, тралы с гидромеханизацией и без гидромеханизации.

Для курсового проекта по тяговому усилию ваерной лебедки выбираем трал 132.2/336 м.

Площадь траловой доски, м2

8

Длина, м: кабелей

80

голых концов

60

Масса грузов углубителей на крыло, кг:

поверхностное

1400

пелагическое

1900-2300

Верхнее раскрытие, м

50-56

Горизонтальное раскрытие, м

54-58

Агрегатное сопротивление, т,с

16-18

Скорость траления, узл

4.5-5.2

Площадь фиктивная, м2

56173

Масса передней части трала, кг

1920.5

1.4 Характеристика промысловой схемы и промыслового оборудования

Промысловая схема со стопорными оттяжками одна из наиболее старых промысловых схем, которая применяется на БМРТ типа «Маяковский». По этой схеме на корме вместо траловых дуг устанавливают подвесные блоки. Трал сначала спускают на кабелях, а затем, на стопорных оттяжках. Концы оттыжек крепят за рамы на палубе, освобожденные от нагрузки кабели подхватывают гаками подъемных оттяжек и заводят в подвесные блоки. Кабели вновь набирают до подхода к блокам стопорных оттяжек и отсоединяют их. Далее соединяют переходные концы с досками, висящими на цепных подвесках, спускают доски в воду и стравливают ваера. При подъеме трала выбирают ваера, закрепляют траловые доски на цепных подвесках, выбирают кабели.

После подхода к корме клячовок к ним присоединяют гаки стопорных оттяжек. Оттяжки набивают, а освобожденные от нагрузки кабели выводят из блоков. Далее поднимают трал по слипу за кабели до подхода голых концов трала к лебедке.

Промысловое оборудование.

Слип для подъема трала на палубу судна обычно имеет криволинейную или прямолинейную форму с углами наклона 30-400.

В кормовой части многих судов кормового траления установлен транцевый портал для подвески траловых досок, ваерных блоков и блоков спускового троса. Одновременно такой портал служит тралмейстерским мостиком.

Палубные ролики для проводки ваеров от лебедки на подвесные ваерные блоки устанавливают, если расстояние между подвесными блоками значительно превосходит расстояние между серединами ваерных барабанов. При этом для проводки одного ваера устанавливают 1-3 ролика. Применение раздельных лебедок исключают использование палубных роликов, кроме роликов для промера ваеров.

Подвесные ваерные блоки крепят на траловых дугах, кронштейнах, транцевых порталах. Траловые дуги в основном применяют на мелких судах.

Спусковой трос служит для стягивания трала в воду. Он представляет собой стальной канат с глаголь-гаком на ходовом конце.

Спусковой трос снабжают также двумя оттяжками. Одна из них служит для отдачи глаголь-гака при его подходе к блоку под слипом, через который проведен спусковой трос. Вторую оттяжку применяют для подтягиванияглаголь-гака спускового троса к месту очередного остралливания трала. Спусковой трос тянут турачкой траловой, вспомогательной грузовой или вытяжной лебедки. Вытяжные концы представляют собой стальные канаты с гаками для подъема мешка с уловом на слип и далее на палубу судна. Для этого вытяжные концы подают на вытяжную лебедку. При подъеме большого улова необходимо не один, а два вытяжных конца. Кроме основных, иногда используют дополнительные вытяжные концы, которые проводят через блоки, расположенные высоко над палубой, чтобы при тяге вытяжной конец шел по касательной к образующей слипа. При подъеме очень больших уловов вместо дополнительных вытяжных концов применяют тони для снижения нагрузок на их тяговые органы лебедок.

Грузовые стрелы и порталы служат для подъема над палубой и перемещения к месту выливки мешка с уловом, различных операций по вооружению трала и подготовки судна к лову, погрузочно-разгрузочных работ. Обычно на судне устанавливают 2-4 стрелы. На больших современных траулерах вместо стрел для указанных целей часто устанавливают стационарные порталы П-образной формы. Обычно порталы расположены в районе верхнего порога слипа. Для проводки подъемных тросов к траверзам порталов подвешивают блоки грузоподъемностью 100-150 кН.

Вытяжные лебедки служат для подъема по слипу и рабочей палубе трала с уловом. Нагрузка на лебедку при выполнении этой операции равна весу улова. Тяговое усилие вытяжных лебедок составляет обычно 30-100 кН. Скорость тяги не превышает 0.15-0.30 м/с, а канатоемкость - 100 м.

Ваерные лебедки служат для травления ваеров при спуске трала, закрепление их при застопоренном барабанном процессе траления, выборки ваеров при подъеме трала, удерживание траловых досок у транца судна, регулирования длины ваеров при переводе разноглубинного трала с одного горизонта лова на другой. Ваерные лебедки имеют тяговое усилие до 10-130 кН, скорость выборки ваеров до 3-4 м/с, рабочую канатоемкость - 3600 м. промысловые грузовые лебедки служат для стягивания сеткой части трала в воду при его спуске, выливке улова и выполнения других промыслово-грузовых операций. Такие лебедки устанавливают обычно у порталов грузовых колонн. Тяговое усилие лебедок 15 - 80 кН, скорость тяги 0.3-0.6 м/с.

1.5 Выводы

Применение траловой лебедки в данной промысловой схеме морально устарело. В курсовой работе предлагаю для БМРТ типа «Маяковский» заменить траловую лебедку на траловый комплекс. В качестве ваерных лебедок предлагаю лебедку ЛЭТР-8-1. Ваерные лебедки рассчитываю на тяговое усилие 100 кН и длину ваера 900 м.

2. Технический проект ваерной лебедки ЛЭТР-8-1

2.1 Введение

в курсовом проекте разработана ваерная лебедка ЛЭТР-8-1 для БМРТ типа «Маяковский». В качестве прототипа использована конструкция ваерной лебедки ЛЭТР-8.

Лебедка рассчитана на максимальную нагрузку 100 кН.

2.2 Назначение и область применения

Раздельные ваерные лебедки служат для хранения и травления ваеров при спуске трала, закреплении их при застопоренном барабанном процессе траления, выборки ваеров при подъеме трала, удерживание траловых досок у транца судна, регулирования длины ваеров при переводе разноглубинного трала с одного горизонта лова на другой.

Лебедки устанавливают в кормовой части траулера симметрично относительно его диаметральной плоскости. Ваерные лебедки имеют тяговое усилие до 120-140 кН, скорость выборки ваеров до 3-4 м/с.

2.3 Техническая характеристика

Лебедка ваерная ЛЭТР-8.

Номинальное тяговое усилие на среднем диаметре намотки каната - 100 кН.

2.4 Описание и обоснование конструкции

Редуктора подсоединен также измеритель 16 длины ваера работающий на принципе изменения числа оборотов барабана и изменение диаметров слоев навивки ваера на барабан. Валы главной зубчатой передачи установлены на самоустанавливающихся роликоподшипниках, а валы ваероукладчика - на радиальных шарикоподшипниках.

Крепление ваера осуществляется с помощью клинового зажима на реборде барабана. Одна из реборд барабана выполнена в виде крановика и совместно с защелкой - собачкой 15 используется при остановке лебедки из-за задева трала, когда приводной мощности лебедки недостаточно для отрыва трала от грунта. В нерабочее время собачка должна быть застопорена. На другой реборде барабана расположен тормозной шкив ленточного тормоза 18.

2.5 Расчеты

Расчеты были выполнены на компьютере по специальной программе.

2.5.1 Расчет основного барабана

Исходные данные:

Сила тяги барабана S = 100 кН

Расчетные данные:

Значение диаметра каната DК = 26.0 мм

2.5.2 Расчет плотности укладки каната

Расчетные данные:

Шаг укладки каната TК = 26.2 мм

Плотность укладки каната PlК = 0.902

2.5.3 Расчет числа слоев навивки на барабан

Исходные данные:

Коэффициент E = 18.0

Длина каната наматываемого на барабан DlК = 1800

Расчетные данные:

Число слоев навивки Chs = 11.6

2.5.4 Расчет габаритных размеров навивного барабана

Расчетные данные:

Диаметр втулки DV = 445.0 мм

Диаметр реборды Dr = 1155.0 мм

Длина втулки DlV = 1835.0 мм

2.5.5 Расчет крепления конца каната

Исходные данные:

Канат крепится планкой. На барабане должно оставаться при работе не менее 4-х витков каната.

Диаметр крепежного болта Bt = 16.0 мм

Предел прочности материала болта Sib = 0.14 кН/мм2

Расчетные данные:

Число крепежных болтов Chb = 8.0 шт

2.5.6 Расчет прочных размеров навивного барабана

Исходные данные:

Сила тяги барабана S = 100кН

Значение диаметра каната Dк = 26 мм

Длина каната, наматываемого на барабан Dlк = 900 м

Число слоев навивки ChS = 11.6 = 12

Диаметр втулки DV = 545.0 мм

Диаметр реборды Dr = 1095.0 мм

Длина втулки DlV = 1935.0 мм

Допускаемое напряжение сжатия

материала втулки барабана SisGd = 0.11 кН/мм2

Предел текучести материала втулки Sigмат = 0.24 кН/мм2

Число колец жесткости Shко = 0.0

Допускаемое напряжение на изгиб

материала втулки барабана Sid = 0.08 кН/мм2

Допускаемый изгиб реборды по внешнему краю Pd = 0.5 мм

Расчетные данные:

Толщина реборды Tr = 40.0 мм

Толщина втулки Delta = 70.0 мм

Число ребер жесткости Cr = 0.0

Высота ребер жесткости Hr = 0.0

Толщина ребра жесткости Tor = 0.0

2.5.7 Расчет винтового канатоукладчика

Исходные данные:

Диаметр оси ролика канатоукладчика Dov = 20 мм

Диаметр ролика канатоукладчика Drv = 100.0 мм

Смещение ваерного блока от середины барабана Ha = 500 мм

Расстояние между ваерным блоком

и канатоукладчиком Hl = 10000.0 мм

Коэффициент трения в оси ролика канатоукладчика Um=0.94

Допускаемое напряжение на изгиб

материала поводка Sz = 0.15 кН/мм2

Допускаемое напряжение сжатия

материала ходового винта S1 = 0.11 кН/мм2

Зазор между винтом и подшипником оси поводка Zl = 0.5 мм

Скорость тяги каната на среднем слое навивки Vt = 1.6 м/с

Допускаемое удельное давление в резьбе Ud = 0.015 кН/мм2

Расчетные данные:

Средний диаметр ходового винта DsrV = 60.0 мм

Минимальный диаметр ходового винта D1 = 80.0 мм

Толщина поводка Dep = 21.0 мм

Длина оси поводка Dlp = 8.4 мм

Диаметр оси поводка Dp = 178.7 мм

Шаг винта Stv = 23 мм

Мощность привода канатоукладчика Vn = 0.01 кВт

Ход каретки ваероукладчика Dl = 1809 мм

Высота гайки Ph = 18 мм

Шаг резьбы канатоукладчика Sr = 41.0 мм

Глубина резьбы ходового винта Gr = 5.8 мм

2.5.8 Расчет простого ленточного тормоза

Исходные данные:

Угол обхвата лентой тормозного шкива Al = 5.1 рад

Плечо усилия на тормозном рычаге Pg = 400.0 мм

Расстояние от оси вращения рычага до

точки А крепления ленты на рычаге Ra = 0.0 мм

Расстояние от оси вращения рычага до

точки В крепления ленты на рычаге Rb = 0.0 мм

Допустимое напряжение растяжения материала ленты Srd = 0.17 кН/мм2

Допустимое напряжение сжатия материала шкива Ssh = 0.11 кН/мм2

Допустимое напряжение сжатия материала ленты Srg = 0.17 кН/мм2

Допустимое удельное давление материала ленты Ud1 = 0.015 кН/мм2

Допустимое удельное давление в гайке шпинделя Ud2 = 0.02 кН/мм2

Коэффициент трения между шкивом и лентой Uт1 = 0.36

Расчетные данные:

Диаметр тормозного шкива Dt = 893.6 мм

Ширина тормозной ленты B1 = 9.5 мм

Усилия, прикладываемые к тормозному шкиву G = 0.0 кН

Наружный диаметр резьбы шпинделя D1 = 110 мм

Внутренний диаметр резьбы шпинделя D2 = 90 мм

Средний диаметр резьбы шпинделя Dsl = 100 мм

Толщина обода шкива Dsh = 60.9 мм

Ход резьбы шпинделя Hod = 20.0 мм

Рабочая высота профиля резьбы Hr = 10.0 мм

Шаг резьбы шпинделя Hrl = 20.0 мм

Толщина ленты Tl = 3.94 мм

Момент на шпинделе Tr = 13.58 кН•м

Усилие в сбегающей ветви тормозной ленты Sb = 10.12 кН

Усилие в набегающей ветви тормозной ленты Sn = 63.45 кН

Кинематический расчет

Т = 100 кН, х = 1.6 м/с, КПД = 0.9, Dсрд = 679 мм

Ng = 140•1.6/0.9 = 248 = 250 кВт

nб = 90/р?Dср = 90/3.14•1м = 28.7 об/мин

iрез = nдв/ nб = 1000/28.7 = 31.8

2.5.9 Параметры, выбранного двигателя

4АН315М4У3

Табличная мощность двигателя Strem = 250 кВт

Частота вращения вала двигателя Сvr = 1500 об/мин

Величина махового момента ротора электродвигателя Аxm = 100 Н•м2

Время пуска электродвигателя Tp = 3.0 с

Передаточное число редуктора Per = 31

2.5.10 Расчет грузового вала

Исходные данные:

Угол между направлениями усилий

в концах тормозной ленты Ва = 3.14 рад

Плотность материала барабана Рb = 7800 кг/м3

Масса одного погонного метра каната Рr = 1.63 кг/м

Допускаемое напряжение на изгиб материала вала Sv = 0.14 кН/мм2

Расчетные данные:

Ориентировочный диаметр грузового вала D = 163.34 мм

Диаметр вала в точке В Db = 155.84 мм

Диаметр вала в точке С Dc = 160.05 мм

Диаметр вала в точке D Dd =156.52 мм

2.5.11 Подбор муфты

Габаритный диаметр муфты Dmf = 180 мм

Габаритная длина муфты Lmf = 350мм

Будет использована кулачково- сцепная муфта.

Длина соединительной шпонки BSHP = 41.9 мм

Высота соединительной шпонки HSHP = 21.0 мм

2.5.12 Подбор подшипника для опоры грузового вала

Диаметр вала в месте установки подшипника 176 мм

Величина динамической грузоподъемности DinGr = 24807.84 кН

Осевое усилие в опоре Fos = 112.4 кН

Радиальное усилие в опоре Frad = 20.1 кН

Срок службы подшипника SrRa = 70000 час

Список использованной литературы

1. «Большие траулеры промыслового флота СССР» каталог технических характеристик. Л. 1972г. - 75с.

2. «Детали машин» Атлас конструкций Мн. 1986г. - 250 с.

3. Есаков В.П. «Электрооборудование и электроприводы промышленных установок » Киев 1981 г. - 340 с.

4. Зайчик К.С. «Морские рыбопромысловые суда». Л. 1985г. - 450с.

5. Каменский Е.В., Терентьев Г.Б. «Траулеры и сейнеры». Л. 1985г.-350с.

6. Карпенко В.П. Торбан С.С. “Механизация и автоматизация процессов промышленного рыболовства . ”М.1990-464с.

7. “Курсовое проектирование деталей машин.” (Под редакцией Чернавского) М.1979г.-358с.

8. Мельников В. Н. “Устройство орудий лова и технология добычи рыбы.” М.1991г.-386с.

9. Моисеев П.А. “Биотехнические ресурсы Мирового океана.” М.1989г.-367с.

10. “Приводы машин.” Л.1982-762с.

11. Справочник по электрическим машинам. М.1988г.-478с.

12. Чернилевский В.Д. “Курсовое проектирование деталей машин и механизмов.” М.1980г.-565с.

Страницы: 1, 2


реферат реферат реферат
реферат

НОВОСТИ

реферат
реферат реферат реферат
реферат
Вход
реферат
реферат
© 2000-2013
Рефераты, доклады, курсовые работы, рефераты релиния, рефераты анатомия, рефераты маркетинг, рефераты бесплатно, реферат, рефераты скачать, научные работы, рефераты литература, рефераты кулинария, рефераты медицина, рефераты биология, рефераты социология, большая бибилиотека рефератов, реферат бесплатно, рефераты право, рефераты авиация, рефераты психология, рефераты математика, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, рефераты логистика, дипломы, рефераты менеджемент и многое другое.
Все права защищены.